Fantastic Soap bubble and soap experiments and where to find them

Eantastic Soap bubble and soap experiments and where to find them

Springer

Spinger Monographsiin Mathematis

Aatarl lopez
Constant Mean Curvature Surfaces with Boundary
The study of surfaces with constant mean curvature (CMC) is one of the main topics
 modio, or for capllisy phenomenen2 Moremerer, as moss techniques used in the theary of CMC surfaces not only imoke goonscric mertods hut alko PDF and complex analyass. the thoory is also of grati interost for many other mathematical fields.
While minimal surffices and CMC sarfaces si general hive alreaty been treated in the
 diccuston ubether the ghminetrise of the curve inherx wo the surfice the posithe values of the mean cursature aria sad volumes stability; the circular boondery case and the existence of the Platen problem in the nos-parametric cove. The exposition proxides an outbok se recent resench hut als a set of exchniqpest that allows the reselts so be expanded to ocherr ambernt spaces. Throughoat the text. numerows illustrations darity The ber har prooks.
 PDEs. It guiker exders hp to the tate-al-the -artof the theory and introduces them to interesting open problems.

What are the soap bubbles spanning a circle?

Solutions of a variational problem

Given a closed curve $C \ldots$
Problem 1. Find the surface of least area spanning C.
Problem 2. Find the surface of least area spanning C enclosing a given volumen.

Problem 1. $A^{\prime}(0)=0$ for any variation $\Leftrightarrow H=0$: NO blow
Problem 2. $A^{\prime}(0)+\lambda V^{\prime}(0)=0$ for any variation $\Leftrightarrow H=c$: YES blow

The Plateau problem:

Given a closed curve C, find a minimal surface spanning C.
Theorem (Douglas-Radó)
There exists a disk minimal surface spanning any given closed curve.

Sophie Germain (1831) coined the word mean curvature

1. Il cile S. Germain, sur la courlure des sufuces.

1

1.

Mémoire sur la courbure des surfaces.

(Par Melle Sophie Germain à Paris.)
Observations préliminaires.
Les surfaces ont été l'objet d'un grand nombre de travaux, et cependant, si l'on cherche à pressentir quel obstacle pourroit, à la première vue décourager le lecteur, on est moins frappé de l'espèce de satiété qui s'attaehe au sujet que de la trop grande nouveauté de laspect sous lequel on a cru devoir l'envisager.

On se propose, en effet, dans ce mémoire, de sigualer et de définir un genre de quantités dont l'existence ne paroit pas avoir été soupçonnée; et, en traitant une matière qui semble épuisée, on sera forcé de recourir à des distinctions inusitées, à des notions singulières en apparence. Sans doute, il est ì craindre que de telles recherches qui n'auront ni l'appui d'un nom celèbre, ni, malgré tous mes soins, le secours d'une exposition lumineuse soient faiblement accuellies; le moindre degré dattention suffiroit cependant pour recomnoitre que ces distinctions sont fondées, et que ces notions résultent du point de vue sous lequel la courbure des surfaces se présente dans de certaines questions. Ainsi lorsque la courbure entre en comparaison avec des quantités dynamiques, on ne peut se dissimuler qu'elle est tacitement traitée comme une quantité du
. même genre. Les surfaces ne sont donc plus considérées par rapport à elles scules, et il ne s'agit pas de leurs propriétés particulières, ni de celles qui sont communes ì une classe d'entr'elles. Ce dont il s'agit alors c'est de définir la quantité dynamique née de la courbure. Or cette quan-

§. 2.

Distribution de la courbure linéaire autour de chacun des points de la surface.

1. Quelle que soit la diversité des surfaces, les courbures linéaires produites par l'intersection du plan normal qui prendroit successivement toutes les positions possibles autour d'un point donné, offrira toujours le même arrangement symétrique.

Cet arrangement constitue ce que nous nommerons dorénavant: loi de distribution de la courbure autour de chacun des points de la surface.

On a pu remarquer que la courbure contenue dans les plans moyens joue, par rapport à toutes les autres, le rôle d'une moyenne.

La dénomination de courbure moyenne convient donc ici à aussi juste titre que celle de courbures principales, imposée depuis longtems à la plus grande et à la moindre des courbures linéaires réparties autour d'un des points de la surface. Il est, en effet, également nécessaire, de distinguer, parmi tant de courbures diverses, celles qui, entre toutes les autres, jouissent de propriétés qui leur sont particulières.

La loi qui nous occupe se compose des propositions suivantes, dont les équations démontrées d'avance dans le paragraphe précédent, doivent être regardées comme l'expression analytique.

Première proposition. Quelle que soit d'ailleurs la position de deux plans normaux, perpendiculaires entr'eux, menés par un point donné de la surface, la somme des courbures contenues dans ces deux plans sera toujours la même; par conséquent, cette somme sera égale à celle des courbures principales.

Ruled minimal surface: the helicoid

Theorem (Catalan)

Helicoid (and plane) is the only ruled minimal surface
$(s, t) \longmapsto \underline{\text { circular helix }}+t \underline{\text { horizontal line }}$

SUR

LES SURFACES RÉGLÉES DONT L'AIRE EST CN MINIMUM;

PAR E. CATALAN.

Problème. Quelles sont, parmi les surfaces réglées, celles dont l'aire est un minimum, ou (ce qui revient au mëme) dont les deux mayons de courbure principaux sont, en chaque point, égaux entre eux et de signes contraires?

1. Soit $a b$ unc position quelconque de la génératrice rectiligne. Me-

nons, par le point m, un plan perpendiculaire à $a b$: ce plan, normal à la surface, la coupera suivant une courbe CD.
La somme des courbures de deux sections normales perpendiculaires doit ètre nulle; par suite, le rayon de courbure de la section CD, au point m, doit être infini.

Nous chercherons donc la valeur du rayon de courbure pour un point quelconque M de $C D$, et nous exprimerons que ce rayon devient infini quand le point M coincide avec m.
2. Soient X, Y, Z les coordonnées de M, et x, y, z celles de m. En 26.

Ainsi, toutes les génératrices sont parallèles à un méme plan directeur. Prenons ce plan pour celui des $x z$: les constantes g et h devront être nulles, d’après l'équation précédente. En même temps, nous pouvons déplacer l'origine de maniere à faire évanouir les constantes arbitraires D, E et F. Les équations (26) et (27) deviendront donc, à cause de

$$
\begin{gathered}
m=1, \quad \alpha=0, \quad \beta=1: \\
x-a z=0, \quad y=-\mathrm{C} \operatorname{arctang} a \\
y=-\mathrm{C} \operatorname{arctang} \frac{x}{z} .
\end{gathered}
$$

16. Cette dernière équation représente un héliçoide à plan directeur. Ainsi : L'héliçoide gauche à plan directeur est la seule surface réglée qui ait, en chaque point, ses deux rayons principaux, égaux et de signes contraires.

Solutions of the Björling problem

Problem (Björling 1844)

Given a curve α and a unit normal V along α, find a minimal surface containing α with normal V along α.

$$
X(u, v)=X(z)=\Re\left(\alpha(z)-i \int^{z} V(w) \times \alpha^{\prime}(w) d w\right)
$$

where $\alpha, V: I \rightarrow \mathbb{R}^{3}, I=I \times\{0\} \subset \Omega \subset \mathbb{C}, \quad \Omega$ simply-connected. unique with $\alpha=X(u, 0)$. (Schwarz, 1890)

Uniqueness \Rightarrow
(1) If $L \subset S$ is a straight-line $\Rightarrow S$ is symmetric about L.
(2) If S meets orthogonally a plane $P \Rightarrow S$ is symmetric about P.

Procedure: calculate the integral \rightsquigarrow replace z by $u+\mathbf{i} v \rightsquigarrow$ take real parts
(1) Catalan: $\alpha(t)=(1-\cos (t), 0, t-\sin (t)), V(t)=\mathbf{n}(t)$

(2) Henneberg: $\alpha(t)=\left(\cosh (2 t), 0, \sinh (t)+\frac{1}{3} \sinh (3 t)\right), V(t)=\mathbf{n}(t)$

(3) Minimal Möbius strip (Meeks): $\alpha(t)=(\cos (t), \sin (t), 0)$, $V(t)=\cos (t / 2) \mathbf{n}(t)+\sin (t / 2) \mathbf{b}(t)$.

(-, M. Weber), Michigan Math. J. (2018) \checkmark
(1) Trefoil curves

$$
\xi=\frac{1}{4}: \quad \alpha(t)=((\cos (t)-\xi) \cos (t),(\cos (t)+\xi) \sin (t))
$$

(2) Logarithmic spiral: $\alpha(t)=e^{t}(\cos (t), \sin (t))$

The Scherk surface

Problem: minimal surfaces parametrized by $z=f(x)+g(y)$.

$$
\begin{gathered}
X(x, y)=(x, y, f(x)+g(y))=(x, 0, f(x))+(0, y, g(y)) \\
z(x, y)=\log (\cos (y))-\log (\cos (x))=\log \frac{\cos (y)}{\cos (x)}
\end{gathered}
$$

A translation surface is a surface parametrized by $X(s, t)=\alpha(s)+\beta(t)$.
Problem: classify all minimal surfaces of translation type

葍 (-, O. Perdomo), J. Geom. Anal. (2017) \checkmark
(T. Hasanis, -), (2019) \checkmark
$K=c t \Rightarrow K=0$ and the surface is cylindrical (α is a straight-line)
周 (-, M. Moruz), J. Korean Math. (2015) \checkmark
(T. Hasanis, -), Comm. Anal. Geom. (2019) \checkmark

Rotational cmc surfaces

Theorem (Meusnier, Riemann)

The catenoid is the only rotational minimal surface.

$$
f(x)=\cosh (x)=\frac{e^{x}+e^{-x}}{2}
$$

Rotational surfaces with $H=c t$ (Delaunay surfaces)

Riemann minimal examples

Minimal surfaces constructed by circles in parallel planes

$$
\begin{aligned}
X(u, \theta)= & \left(\int^{u} \frac{\lambda t^{2} d t}{\sqrt{\lambda^{2} t^{4}+2 \mu t^{2}-1}}, 0, \int^{u} \frac{d t}{\sqrt{\lambda^{2} t^{4}+2 \mu t^{2}-1}}\right) \\
& +u(\cos \theta, \sin \theta, 0)
\end{aligned}
$$

L.orsque sur la surface minima on décrit dans le veisinage d'un de ces quatre points un chemin conduisant d'une des lignes de contour à la suivante, l'argument de $d t$ varie de π. On peut donc, comme au § XIII, poser de mème ici

$$
\frac{d u}{d t}=\frac{C_{2}}{\sqrt{\left(t^{2}-1\right)\left(t^{1}+1\right)}},
$$

et C_{2}^{2} doit etre imaginaire pure, afin que $d u^{2}$ soit réel sur le contour. On trouve

$$
C_{1}=3 \sqrt{3} C_{1}^{2} i^{2}
$$

Celle expression coïncide avec celle précédemment fablic pour $\left(\frac{d u}{d \log \eta}\right)^{3}$. Pour simplifier encore posons

$$
\left(\frac{x^{2}-1}{l^{2}+1}\right)^{2}=\omega^{2}, \quad x_{1}^{1}+x_{2}^{-2}=2 \lambda .
$$

et remarquons que

$$
\left(\frac{d u}{d \log \eta}\right)^{2} d \log \eta=\left(\frac{d u}{d \lambda}\right)^{2} \frac{d \lambda}{d \log \eta} d \lambda .
$$

Alors un calcul tress simple donne

où $p=-\frac{1}{2}(1-i \sqrt{3})$ désigne une racine cubique de I'unité. La constante réelle $\mathrm{C}=\frac{1}{8} \mathrm{C}_{1}$ sera déterminée par la longueur donnée les arêtes du tétrac̀dre.

§ XIX

Pour terminer, nous traiterons encore le problème de surface minima pour le cas oủ l'encadrement est formé par deux circonférences quelconques situées sur des plans paralléles. Ici l'on ne

343 DEESILME PABTIR. - MEHOLRES PCHLIES APBES LA MORT DE RIEMANA.
connait done pas la direction des normales au contour, et l'on ne peut donc en opérer la représentation sur la sphère. Mais on arrive à la solution du problème en faisant l'hypothése que toutes les sections planes, parallèles aux plans des deux circonférences d'encadrement, sont également des circonférences. On démontrevar que, sous ceete nypotarese, int condumon dir minmum pett être satisfaite.

Si l'on prend l'axe des x perpendiculaire aux plans des circonférences de contour, l'équation de la courbe d'intersection déterminée par un plan qui leur est parallèle sera
(h) $\mathrm{F}=y^{2}+z^{2}+2 x y+23 z+y=0$,
et il s'agit alors de déterminer α, β, γ comme fonctions de x. Posons, pour abreger,

$$
\sqrt{\left(\frac{d F}{d x}\right)^{2}+\left(\frac{\partial F}{\partial r}\right)^{2}+\left(\frac{d F}{d z}\right)^{2}}=\frac{1}{n}
$$

en sorte que

$$
\cos r=n \frac{\partial \mathrm{~F}}{\partial x}, \quad \sin r \cos \rho=n \frac{\partial \mathrm{~F}}{\partial y}, \quad \sin r \sin \varphi=a \frac{\partial \mathrm{~F}}{\partial z} .
$$

Alors la condition du minimum peut se mettre sous la forme

$$
\frac{\partial\left(n \frac{\partial \mathrm{~F}}{\partial x}\right)}{\partial x}+\frac{\partial\left(n \frac{\partial \mathrm{~F}}{\partial y}\right)}{\partial y}+\frac{\partial\left(n \frac{\partial \mathrm{~F}}{\partial z}\right)}{\partial z}=0
$$

$$
\begin{gathered}
\mathcal{O}_{1,2} \rightarrow 0 ? \\
\mathcal{O}_{1,2}>(\sqrt{2}-1) h
\end{gathered}
$$

(-), Annali Mat. Pura. App. (2017) \checkmark

In other ambient spaces， $\mathbb{L} 3, H=0, H=c$ ．
围（－）Diff．Geom．Appl．（1999）\checkmark
國（－）Geom．Dedicata，（1999）\checkmark
（F．López，－，R．Souam）Michigan Math．J．（2000），\checkmark
（－）Mon．Math．（2008）\checkmark
（O．Boyacioglu，－，D．Saglam）Taiwanese J．Math．（2011）\checkmark
围（－，A．Nistor），Results Math．（2013）\checkmark
围（S．Kaya，－），Proceedings of the conference M：IV，to appear \checkmark

Double bubbles

Proof of the Double Bubble Conjecture

By Michael Hutchings, Frank Morgan, Manuel Ritoré, and Antonio Ros*

Abstract

We prove that the standard double bubble provides the least-area way to enclose and separate two regions of prescribed volume in \mathbb{R}^{3}.

Conjeture:

Spherical caps are the only compact CMC surfaces spanning \mathbb{S}^{1}
(1) topological disk.
(2) without self-intersections.
(3) stable.
$(1)+(3) \Rightarrow$ yes!

PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 127, Number 4, April 1999, Pages 1195-1200
S 0002-9939(99)04950-3

STABLE CONSTANT MEAN CURVATURE SURFACES WITH CIRCULAR BOUNDARY

LUIS J. ALÍAS, RAFAEL LÓPEZ, AND BENNETT PALMER
Theorem 1. Let D denote the unit disc in the complex plane and let $X: D \longrightarrow \mathbf{R}^{3}$ be a conformal immersion with constant mean curvature h. Assume X is stable and that $X(\partial D) \subset \mathbf{S}^{1}$. Then $X(D)$ is a spherical cap of radius $1 /|h|$. (The case $h=0$ corresponds to a flat disc.)

The Dirichlet problem

Given a domain $D \subset \mathbb{R}^{2}, H \in \mathbb{R}$ and φ a continuous function on $\partial \Omega$, : Does a graph exist on Ω, with constant mean curvature H and boundary values φ ?

$$
\begin{gathered}
\operatorname{div} \frac{D u}{\sqrt{1+|D u|^{2}}}=2 H \text { on } \Omega \\
u=\varphi \text { along } \partial \Omega
\end{gathered}
$$

Theorem (Serrin)

If $\kappa_{D} \geq 0$, there exists a solution for any φ if and only if $2 H \geq \kappa$.

$$
\begin{cases}H=\text { constant } & \text { in } D \\ u=0 & \text { along } \partial D\end{cases}
$$

If D is a convex domain...
(1) $H>\kappa$.
(2) length $(\partial D)<\frac{\sqrt{3} \pi}{H}$.
(3) $\operatorname{area}(D)<\frac{\pi}{2 H^{2}}$.
(c) $\operatorname{diam}(D)<\frac{1}{H}$.
(- S. Montiel), Duke Math. J. (1996) \checkmark
(-), J. Differ. Eq. (2001) \checkmark
(-), Glasgow Math. J. (2002) \checkmark
$\exists M$ independent on $t \in \mathcal{A}$:

$$
\left\|u_{t}\right\|_{C^{1}(\bar{\Omega})}=\sup _{\Omega}\left|u_{t}\right|+\sup _{\Omega}\left|D u_{t}\right| \leq M
$$

Theorem

If D is convex and $L(\partial D)<\sqrt{3} \pi / H^{2}$, there is a solution with $u=0$.

$$
L<\frac{\sqrt{3} \pi}{H^{2}} \rightsquigarrow h<\frac{1}{2 H}-\epsilon .
$$

A bifurcation problem

Max Planck Institute of Colloids and Interfaces (Potsdam, Germany)

Theorem

A cylinder confined in a strip with contact angle $\gamma \in(\pi / 2, \pi)$ bifurcates in a family of non-rotational CMC surfaces with the same boundary. The new surfaces are periodic along the strip.

图 (-), Siam J. Math. Anal. (2014) \checkmark
周 (-), Siam J. Appl. Math. (2017) \checkmark
(-), Mathematics for Industry, vol. 25, The Role and Importance of Mathematics in Innovation, Springer, 2016, \checkmark

Theorem (Vogel, Athanasseas)

Hemisphere is the only stable CMC surface over a plane.
Cylinder is the only stable CMC surface between two parallel planes.

Theorem (2014)

Part of a sphere is the only stable CMC surface in a wedge.

Advances in Mathematics 262 (2014) 476-483

Capillary surfaces with free boundary in a wedge
Rafael López ${ }^{1}$

Theorem 1.1. Let $\phi: M \rightarrow \mathbb{R}^{3}$ be a stable capillary compact surface with free boundary in a wedge W. Then $\phi(M)$ describes part of a sphere centered at the vertex.

THANKS FOR YOUR ATTENTION!

